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Employing a recently proposed 'multi-wave interaction' theory (Glazman 1992),
inertial spectra of capillary-gravity waves are derived. This case is characterized by a
rather high degree of nonlinearity and a complicated dispersion law. The absence of
scale invariance makes this and some other problems of wave turbulence (e.g.
nonlinear inertia-gravity waves) intractable by small-perturbation techniques, even in
the weak-turbulence limit. The analytical solution obtained in the present work for an

arbitrary degree of nonlinearity is shown to be in reasonable agreement with
experimental data. The theory explains the dependence of the wave spectrum on wind
input and describes the accelerated roll-off of the spectral density function in the
narrow sub-range separating scale-invariant regimes of purely gravity and capillary
waves, while the appropriate (long- and short-wave) limits yield power laws

corresponding to the Zakharov-Filonenko and Phillips spectra.

1. Introduction

The subject of this paper is turbulence of surface gravity-capillary waves, although
the formalism can be applied to other problems of nonlinear wave dynamics, such as
inertia gravity and Rossby waves in the ocean and atmosphere, etc. The weak
turbulence theory presently available for these problems (Zakharov, L'vov & Faikovich
1992) proved successful in many cases. However, some of its constraints considerably
limit its scope. In particular, weak turbulence theory requires scale invariance (as
yielded by a power-law type of dispersion law) and localization of external sources and
sinks in the wavenumber-frequency space to yield practical results even for weakly

nonlinear problems. Owing to formidable mathematical difficulties, weak turbulence
theory does not account for higher-order nonlinear effects. Therefore, some intuitive
and less formal approaches may prove advantageous in many cases. An example is

given by Phillips (1985) where weak turbulence of deep-water surface gravity waves is
considered with the source functions continuously distributed in the wavenumber

space. A similar approach, but going beyond the weak turbulence limit (and called the
'multi-wave interaction theory') was suggested recently (Glazman 1992) to explain
observed variations in the exponent for power-law spectra of surface gravity waves.
The Kolmogorov assumption of locality of nonlinear wave wave interactions is crucial
in these theories. Provided this assumption remains approximately valid for an
increased number of the resonant Fourier components, multi-wave interaction theory

could in principle be applied to a broad class of problems. Indeed, it does not require
the lowest degree of nonlinearity, simple dispersion laws or simple expressions for the
wave energy density, and it can be used for weakly non conservative systems-as
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demonstrated earlier. However, owing to its heuristic nature, multi-wave interaction
theory needs thorough experimental verification.

Capillary-gravity waves are characterized by a highly complex expression for the
potential energy,

U=_pg q dx+o'p [(l+[Vq[_) _'_z-lldv, (1.1)

where q = q(x, t) is the elevation of the fluid surface above the zero-mean level, g is the
acceleration due to gravity, and o"is the coefficient of surface tension divided by fluid
density p. The dispersion law is

w2 = gk + o'k '_, (1.2)

which, while permitting three-wave resonant interactions, eliminates scale-invariance

(actually, statistical sell-affinity) of the wave field. Characteristic wavelengths at which
(1.1) and (1.2) are relevant extend from hundredths and up to ten centimetres- the
waves amenable to accurate laboratory investigation. Thus, the capillary-gravity
waves are highly interesting as a test case. Besides, these waves are primarily
responsible for radar backscatter by the ocean surface, and thus are of great practical
interest.

Laboratory (Jfihne & Riemer 1990) and field (Hwang et al. 1993; Hara, Bock &

Lyzenga 1994) observations showed that, contrary to intuitive expectations, the
wavenumber spectrum in the capillary-gravity range does not exhibit a monotonic
transition from the gravity wave to the capillary wave regime. Instead, it experiences
an accelerated roll-off at a rate exceeding the rates of both gravity and capillary spectra
roll-offs. The accelerated roll-offcommences at wavenumbers which show no noticeable

dependence on the wind energy input (Jfihne & Riemer 1990), although the influence
of long waves appears to be important (Hara et al. 1994). This behaviour finds a simple
explanation in the framework of the present theory.

In §2, the theoretical approach is reviewed. Spectra of capillary-gravity waves are
derived in § 3. In its present form, the theory ignores some interesting, although well-
known, effects of longer waves on the capillary-gravity ripples (e.g. Phillips 1981).
These include a highly non-local (in the wavenumber space) energy exchange through
the radiation stress exerted by longer waves and through the generation of 'parasitic
capillarities' at the crests of steep gravity waves (Longuet-Higgins 1963). Other factors
of short-long wave interactions include an additional acceleration 'felt' by the short-

scale waves riding on top of longer waves. Since the present study focuses only on the
energy transfer by the local inertial cascade, some discrepancies with the observations
are to be expected; these are discussed in §4.

2. Multi-wave interaction theory for capillary-gravity waves

Let us consider a conservative spectral flux of wave energy. The external energy
source acts at lower frequencies-outside our inertial range. Therefore, a specific
mechanism of wave generation is not addressed here. The rate Q of energy input,
assumed to be known, equals the rate of energy transfer down the spectrum. Following
the earlier reasoning (Glazman 1992), Q is related to the characteristic time of

nonlinear wave wave interaction (the 'turnover time'), t,,, and the characteristic
energy E n transferred from a cascade step n to step (n + l) by

pQ = En/t,, (2.1)

where the water density p appears because Q is taken per unit mass of water. Provided

E,, and t, can be expressed in terms of k, _oand wave amplitude a, equation (2.1) allows
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one to derive the spectrum by means of elementary algebra (e.g. Frisch, Sulem &
Nelkin 1978; Larraza, Garrett & Putterman 1990). Let us express these parameters in

terms of the relevant quantities.
An approximate equi-partition of energy between the kinetic and the potential parts

allows one to write the surface density of the total wave energy, E, as

E ,_ p[g(,q2) + cr((Vq)Z)], (2.2)

where the angular brackets denote an ensemble average. To pass from (1.1) to (2.2) we
assumed ((V_/)2> ,_ 1 which is justified for natural seas (e.g. Cox & Munk 1954). The
energy E is related to the spectral density of the wave energy by

E = f S(o,)do_ = ff F(k,O)kdOdk, (2.3)

where the integration is carried out over all wavenumbers and frequencies. Here, S(_o)
is the frequency spectrum and F(k, O) is the two-dimensional wavenumber spectrum of

the wave energy.
The amount of energy, E,, transferred by the cascade mechanism during time t, is

estimated as

'y_'n+,
E_ = S(oJ) d_o, (2.4)

n

where (_on, _on+l) is the width of a cascade step (which must be much smaller than the
width of the inertial range), and the ratio r = _on+,/oJn is constant and sufficiently

greater than unity-as required by the assumption of locality of wave-wave interactions
in the frequency space. Indeed, differentiating (2.4) over oJn yields

-- dEn/d_ % = S((o_)- rS(r_%) = S(Wn) [1 -- rl-P],

where the latter equality is valid for wave spectra of type S(_o) oc _o-'. Provided the
spectrum rolls off sufficiently fast (i.e. r_-p <{ 1), we have

S((o) ,_ - dE(_o)/do_. (2.5)

Although the spectrum being derived does not follow a power law o_-p, the above
approximation can be easily checked a posteriori. From (2.2) it follows that E n for
gravity-capillary waves can be written as

E n _ p[gaZ_+ o-(an kn)2]. (2.6)

Here, an is the Fourier amplitude of surface oscillation at the frequency/wavenumber
scales son and k n, corresponding to the nth step in the spectral cascade.

The derivation of the turnover time is formally based on the scaling of the collision

integral in the kinetic equation (Zakharov & L'vov 1975; Phillips 1985; Larraza et al.
1990). However, we shall introduce this timescale in a less formal fashion which leads
to useful generalizations. To this end let us notice that the nonlinearity of the wave

process is measured by the ratio, e, of the fluid particle velocity, u, to the wave phase
velocity, c = o_/k (Whitham 1974). Since fluid particles in a surface wave on deep water
execute an approximately orbital motion in the vertical plane with radius equal to the
wave amplitude and period 2r_/_o, the value of u at a given scale is estimated as a n _on.

Correspondingly, the ratio u/e is

bln an (o n
- a n k m (2.7)

G,,- oJ,,Ik, oJ.lkn
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This quantity represents the small parameter in deterministic perturbation theories.
However, since the kinetic equation for the wave action, N(k) = F(k)/oJ, is derived for
second statistical moments, the equations of statistical theory are developed in powers
of e2. Terms (i.e. collision integrals) of order e2 correspond to three-wave interactions,
while each additional Fourier component accounted for in the interaction integral adds
new terms which are e_ times as great as a preceding term. The J,th term is of order
e2_'-1). Thus, the characteristic time of nonlinear wave-wave interactions increases as

the number of interacting harmonics grows. For three-wave interactions, this time is
given by t-_ _ _oe2, and for an arbitrary number, _,, we have (see also Larraza et al.
1990)

t-i ,_ o_.,_,, 21. (2.8)

Relationship (2.8) is very convenient, for it allows one to carry out all calculations
in a general form and then take appropriate limits for long- and short-wave
asymptotics: _,,= 4 for gravity waves on deep water and J, = 3 for capillary waves.

Apparently, the actual number of the resonantly interacting wave harmonics in the
transitional, gravity-capillary range should be allowed to take values between 3 and 4.
This leads us to view _,as a statistical quantity. Using this broader interpretation of v,

it is then natural to further assume that the mean 'effective' number of the resonantly
interacting harmonics should increase with an increasing degree of the wave
nonlinearity (Glazman 1992). The following heuristic argument hopefully makes this
point more transparent.

In the absence of ambient fields (such as variable currents or long-wave oscillations),
the kinetic equation is given by

_N/_t + V_.. T(k) = p(k), (2.9)

where p(k) is the spectral density of the input flux of wave action (from wind), and
V k. T(k) denotes the divergence of the action flux in the wavenumber space. In a
random wave field, a few waves whose steepness is well above the average can always
be found. Hence, the degree of wave nonlinearity may be locally very high. Accounting
for the corresponding higher-order terms in the kinetic equation (derived for the
averaged quantities), one can formally write

Vk..T(k) =/.._ + I4 + ... +I,, + .... (2.1 O)

Here, Im are collision integrals accounting for interactions among m waves satisfying
resonance conditions

_Oo+_O_i+_...±o_m =0, ko+_kl±...+-k m = 0 (2.11)

(non-resonant terms can be eliminated by appropriate canonical transformations

(Zakharov et al. 1992). It has been argued (Glazman 1992) that intermittently
occurring rare events of steep and breaking waves (characterized by a locally high
nonlinearity, hence a large, or even infinite, number of interacting Fourier
components), result in an increased mean (over a large time interval and large surface
area) number v of the resonantly interacting harmonics. While this v may be
substantially greater than the minimum resonant number appearing in weak turbulence

theory, the energy and action spectral transfer may still be dominated by the weakly
nonlinear inertial cascade. Thus, the' effective' _,is introduced as an unknown function

of the problem, the assumption of locality of wave wave interactions in the
wavenumber space remaining in force. Although the total flux of the wave action is
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composed of many partial fluxes, the turnover time given by (2.8) is determined by the
slower components of (2.10). In the absence of a rigorous theory for the effective value
of _, in (2.8), we shall relate this quantity to external parameters in a heuristic way in

§4.
Let us consider the case of an external input concentrated at wavenumbers below a

certain ko marking the high-wavenumber boundary of the ' generation range'. That is,
at k > ko, p(k) = 0, and the spectral flux is purely inertial. It is given by

pQ = f,i°_o(k)k dk __ p(k,O)dO. (2.12)

Correspondingly, equation (2.9) for the inertial range yields

E,, ¢%(a,, k,,) 2°'-21 ,_ pQ ( = const), (2.1 3)
where n/> 1.

Using (1.2) and (2.6), equation (2.13) results in

E, _ pQ1/O,-1)o.<,,',1/o,-1) o)nl/(,'-l) _,,(0)_,,), (2.14)
where

q_,(,o,) = {1 +M(o),_M(°)")]°'-21/°'-')J, M(_o) = [k(_o)/x] 2 (2.15)

and 1/x = (o'/g) a/2 gives the characteristic lengthscale of the problem. The explicit
dependence of k on oJ, as follows from (1.2), is

k(o)) = ul(_o)+ u2(w), (2.16)
where

0)2 ta/a 4g3 + 27oj4o-u_.2(o)) = _+_(D(oJ)) 1/2] and D(_o)- 108o.3 (2.17)

Based on (2.14) and (2.5), the energy spectrum is found as

(Q),/,,,-1) qS,(o_) 4(u- 2) . -,,/,,,-1,
) I TM i] , (2.18)

where c¢ is a ('Kolmogorov') constant of proportionality. The short-wave limit of
(2.18) is obtained by setting M(o_)-> _, hence _,,(w)--> 1. The long-wave limit is found
by setting M(o_) <_ 1, hence _,(¢o) _ (M(oJ)) -('' 2)/(,.-_.

3. Wave spectra

For capillary-gravity waves, relationships between the energy spectrum (2.18) and

the spectra of surface height and surface gradient (i.e. wave slope) are more
complicated than the corresponding relationships for pure gravity and pure capillary
waves. Specifically, as follows from (2.2), the spectrum of surface height variation is
related to (2.18) by

s(o ) (3.1)
S_(_o) - pg[1 + M(¢o)] '

In the special case of short waves and _, = 3, this yields the Zakharov-Filonenko
spectrum (Zakharov & Filonenko 1967) of weakly nonlinear capillary waves. It is also
easy to check that the long-wave limit of (3.1) yields spectra of surface gravity waves:
the Zakharov-Filonenko spectrum (Zakharov & Filonenko 1966) for J, = 4 and the

Phillips spectrum for _,-> oc:.
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In the wavenumber domain, the two-dimensional spectrum of surface height
variation (omitting the directional factor, _(0,k)) is found as

[ ]doJ

F,,(k) = k-1 [S_(to)_L=_,k. (3.2)

For simplicity, we assume the following normalization condition for _(0, k):

;T(O,k)dO = (3.3)1.

The two-dimensional spectrum of the wave slope modulus (again, the directional factor
_u(0, k) is omitted) is found as

Fv,_(k) = k2_(k) = (kg)l/2[1 + 3M(k)] S(o)(k)). (3.4)
2pg[1 + M(k)] 3/2

It is useful to present these results in a non-dimensional form by scaling all variables
as follows :

k = KK, co=f2&, Q- Q S(t2) - S(°_)x 3
(_,/x) 3' _t,_,, ' (3.5)

where _ = (g3/o-)_/4 and x = (g/o-) 1/_. In terms of K and 12, the dispersion law (1.2)
takes the form

0 5 = K+ K 3. (3.6)

The non-dimensional spectrum of wave energy becomes

• ,_(_(_ [ 40,-2) It'2 """-_' (3.7),_(I2) = _)_/("-_) ) 1 -I-1+3_i1 '

and the non-dimensional spectrum of wave slope is

fiv,,(K) - K_/2( i + 3K_) S((2(K)), (3.8)
2(1 + K2) 3/2

where Pv,l(K) = (x2/_)Fv,j(k ).

4. Comparison with laboratory observations

To compare these results with the laboratory measurements by J_ihne & Riemer
(1990), we need the 'saturation function'

B(k) = k2Fv_(k). (4.1)

An example of the J/ihne & Riemer measurements is reproduced in figure 1. The
values of the energy flux can be expressed via the external parameters of the
problem - the mean wind velocity, U, at a height, say, 10 m above the mean sea level:

Q = (p,ffp,,,) Rq U 3, (4.2)

where the density ratio is of order 10-3 and the bulk transfer coefficient of the wave

energy, Rq, is somewhere between 3 × 10-5 and 4 × 10-s - as follows from analysis of
Miles' linear instability mechanism of wave generation (Zakharov 1992), from its
empirical parameterizations (Glazman 1994), or from physical reasoning (V. E.

Zakharov, 1994, personal communication): Rq _ (pjp,,,)3,,z.
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FIGURE 1. The saturation spectral function, B(k), measured by J_ihne & Riemer (1990) for wind speed
values shown for each curve in m s ': (a) the linear section, B(k._) (in the along-wind direction), of

the two-dimensional spectrum; (b) (J_ihne & Riemer's (d)) the one-dimensional spectral function

obtained by integrating B(k) over all angles. (Courtesy of the authors.)

The B(k) calculated in the weak turbulence limit is illustrated in figure 2 where the

Kolmogorov constant, 0_= 2 × 10-_', is chosen to provide the correct order of
magnitude (as compared to the measured one) for the lowest curve with U = 5.4 m s-_.
Apparently, the slow growth of the weak-turbulence spectrum with increasing wind is
in strong disagreement with the results shown in figure 1. Moreover, the curves show
no saturation at high wind. Finally, as follows from figure 1, the actual spectrum at
low frequencies and high winds is close to the Phillips spectrum B(k) = const rather
than the Zakharov Filonenko spectrum. All this indicates that the measured spectra
are dominated by a rather high degree of wave nonlinearity. In order to obtain a better
agreement with the observations, we shall now permit v to grow as a function of

increasing wind.
In principle, v can be related to the energy flux Q arriving from the low-frequency

range and to the magnitude of the wave spectrum in that range. Formally, this is done
by matching spectrum (2.18) to the known spectrum of gravity waves at some
characteristic frequency, %, chosen as a boundary between the 'energy supply' range
and the inertial capillary-gravity range. Thus we employ the same sort of compatibility
condition as used in the earlier study (Glazman 1992). For such a frequency, _o0 (for

which ko/x _ 1), equation (2.18) simplifies to

S((oo) = a,pga(,,-z)/(,,-1)Q1/(,,-1)tOo(5,, 8)/(,'-1), (4.3)

where a' = a(4v-7)/(v- 1). As v varies from 4 to infinity, the ratio a'/a changes only
from 3 to 4. This variation is negligible compared to variations in the other factors of
(4.3). Demanding S((o0)= S O where S O is considered to be known, we obtain an

equation for v. Neglecting the weak dependence of a' on v the solution is found as

ln (Qoj3o/g '_)= 1+ (4.4)
In (S o_o_/_'pg3)"

While this expression confirms that v is an increasing function of wind, its practical use
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FIGURE 2. The theoretical saturation function, B(k), for weakly nonlinear waves (v = 4). Here,

cr = 70 cm 3 s z, g = 981 cm s L and _ = 0.02. Numbers at the curves show wind speed U in m s t.
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FIGURE 3. The theoretical saturation function, B(k), for v(U) = 0.2 +0.6U. Here, cr = 70 cm:_s 2,

g = 981 cm s _, and _ = 0.02. Numbers at the curves show wind speed U in m s 1.

is limited because it requires knowledge of the wave spectrum at low frequencies. To

provide So, one would have to consider the entire wave-generation problem, a grand

task well beyond the scope of the present work. Moreover, with respect to the present

experimental comparison, such a formal determination of v might be irrelevant.

Indeed, laboratory experiments greatly limit the wave age by inhibiting the
development of the inertial cascade in deep-water gravity waves (due to a short wind
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fetch and limited water depth) and thus creating in that range an artificial physical

situation. Hence, the determination of S o would present a special problem.

An alternative (and more instructive) approach is to fit some trial function J,(U)

which is reasonable from the physical standpoint. Using, for instance, the simplest

linear function _,= a + bU one can determine empirical coefficients a and b providing

the best agreement between the theoretical and experimental spectra. Coefficient b will

give us an idea about the rate at which _, grows with increasing energy input. This

empirical procedure yielded a = 0.2 and b = 0.6 (In s-_) -1 which corresponds to J, = 3.2
for U = 5 m s-1 and t, = 9.2 for U = 15 m s-a ; the resulting spectra are plotted in figure

3. The Kolmogorov constant used in figure 3, _ = 2 x 10-", is consistent with an earlier

determination (figures 1 and 3 in Glazman 1992). Apparently, a monotonic growth of

_, with increasing wind leads to a better agreement with the experiment. Assuming a

more complicated function _,(U) this agreement can be improved further.

Evidently, the present theory successfully explains several prominent features
observed in the experiment: the gradually diminishing growth of the spectral level with

increasing wind, an accelerated roll-off in the transitional range between the gravity
and the capillary regimes, and the approximate independence of the saturation

function, B, of k in the low-wavenumber end of our range.

The main quantitative discrepancy between the predicted and the measured

spectrum is that the accelerated roll-off of the saturation function observed in the
experiment commences at wavenumbers about three times as high as those predicted

in figures 2 and 3. This discrepancy appears to be due to the possible influence of low-

frequency waves present in actual experiments. The long waves would cause a Doppler

shift of the capillary-gravity wave frequency and would also lead to a non-local energy

exchange between the small-scale ripples and the long waves discussed in §1.

This work was performed at the Jet Propulsion Laboratory, California Institute of
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